Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087830

RESUMO

Capillary electrophoresis has been used to measure the free solution mobilities of a series of 26-base pair (bp) DNA oligomers containing two phased A4T1in-tracts embedded in flanking sequences containing 0 to 11 additional AT bps. A random-sequence 26-bp oligomer with 12 isolated AT bps was used as the reference. Mobility ratios (A-tract/reference) were measured in background electrolytes (BGEs) containing mixtures of small monovalent cations and tetrabutylammonium (TBA+ ) or tetrapropylammonium (TPA+ ) ions. The mobility ratios observed in 0.3 M TBA+ were >1.00, suggesting that the TBA+ ions had formed electrostatic contact pairs with the AT bp in the reference and in the A-tract flanking sequences, decreasing the mobilities of both oligomers. The TBA-AT pairing interactions could be eliminated by increasing the concentration of small monovalent cations in the BGE. In 0.3 M TPA+ , electrostatic contact pairs were formed with the AT bps in the flanking sequences and in the A-tracts. Interestingly, the shapes of the mobility ratio profiles observed for the A4T1in-tract oligomers depended on the total number of A + T residues in the oligomer.

2.
Electrophoresis ; 44(17-18): 1414-1422, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354056

RESUMO

The free solution mobilities of 26-base pair (bp) DNA oligomers containing A-tracts with and without internal ApT steps have been measured by capillary electrophoresis, using the mobility of a 26-bp random-sequence oligomer as a reference. The background electrolytes (BGEs) contained mixtures of Li+ and tetrapropylammonium (TPA+ ) ions, keeping the total cation concentration constant at 0.3 M. The mobility ratios equaled 1.00 in 0.3 M TPA+ , indicating that the A-tract and reference oligomers had the same B-form conformation in this BGE. With increasing [Li+ ], the mobility ratio decreased as Li+ ions became localized in the A-tract minor groove, suggesting that the A-tract was now in the B* conformation. If the A-tract contained an internal ApT step and the oligomer contained less than ∼50% A + T, the mobility ratio reached a reduced plateau value that remained constant as the [Li+ ] increased to 0.3 M. However, for A-tracts without an internal ApT step and for A-tracts embedded in oligomers containing more than 50% A + T, the mobility ratios increased again at high [Li+ ], eventually reaching a plateau value of 1.00. Hence, DNA A-tracts in solution appear to exist as mixtures of the B and B* conformations, with the fractional concentration of each conformer depending on the [Li+ ], the A-tract sequence, and the total A + T content of the oligomer.


Assuntos
DNA , Lítio , Cátions Monovalentes , Sequência de Bases , Íons , Conformação de Ácido Nucleico
3.
Electrophoresis ; 43(1-2): 309-326, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510492

RESUMO

This review describes the results obtained by using free-solution capillary electrophoresis to probe the electrostatic and hydrodynamic properties of DNA in solutions containing various monovalent cations. In brief, we found that the mobilities of double-stranded DNAs (dsDNAs) increase with increasing molecular weight before leveling off and becoming constant at molecular weights ≥400 bp. The mobilities of single-stranded DNAs (ssDNAs) go through a maximum at ∼10-20 nucleotides before decreasing and becoming constant for oligomers larger than ∼30-50 bases. The mobilities of both ss- and dsDNAs increase linearly with the logarithm of increasing charge per unit length and decrease linearly with the logarithm of increasing ionic strength. Surprisingly, ss- and dsDNA mobilities level off and become nearly constant at ionic strengths ≥0.6 M. The thermal stabilities of dsDNAs decrease linearly with increasing solution viscosity. The diffusion coefficients of dsDNA are modulated by the diffusion coefficients of their counterions because of electrostatic DNA-cation coupling interactions. Finally, the anomalously slow mobilities observed for A-tract-containing DNAs can be attributed both to differences in shape and to the preferential localization of small cations in the A-tract minor groove. Since many of these results are mirrored in other polyion-counterion systems, free-solution electrophoresis can be viewed as a reporter of the electrostatics and hydrodynamics of highly charged polyions. New results describing the mobilities of dsDNA analogues of a microRNA-messenger RNA complex are also presented.


Assuntos
DNA , Hidrodinâmica , Cátions Monovalentes , Eletroforese Capilar , Soluções , Eletricidade Estática
4.
Biophys J ; 118(11): 2783-2789, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32445623

RESUMO

The free-solution mobilities of small single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) have been measured by capillary electrophoresis in solutions containing 0.01-1.0 M sodium acetate. The mobility of dsDNA is greater than that of ssDNA at all ionic strengths because of the greater charge density of dsDNA. The mobilities of both ssDNA and dsDNA decrease with increasing ionic strength until approaching plateau values at ionic strengths greater than ∼0.6 M. Hence, ssDNA and dsDNA appear to interact in a similar manner with the ions in the background electrolyte. For dsDNA, the mobilities predicted by the Manning electrophoresis equation are reasonably close to the observed mobilities, using no adjustable parameters, if the average distance between phosphate residues (the b parameter) is taken to be 1.7 Å. For ssDNA, the predicted mobilities are close to the observed mobilities at ionic strengths ≤0.01 M if the b-value is taken to be 4.1 Å. The predicted and observed mobilities diverge strongly at higher ionic strengths unless the b-value is reduced significantly. The results suggest that ssDNA strands exist as an ensemble of relatively compact conformations at high ionic strengths, with b-values corresponding to the relatively short phosphate-phosphate distances through space.


Assuntos
DNA , Eletroforese Capilar , DNA de Cadeia Simples , Concentração Osmolar , Soluções
5.
J Phys Chem B ; 123(17): 3649-3657, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30933495

RESUMO

Capillary electrophoresis has been used to measure the thermal stability of small DNA hairpins in solutions containing 0.3 M cation, comparing the results observed in Na+ and NH4+ with those observed in solutions containing various tetraalkylammonium ions. The midpoint melting temperatures of the hairpins decreased nonlinearly with cation radius but linearly with solvent viscosity, suggesting that the reversible melting transition involves DNA migration through the solvent to find stable base-pairing partners. The normalized melting temperatures increased linearly with the inverse viscosity of the solvent and agreed with values calculated from literature data for another small DNA hairpin, a small RNA duplex, and sonicated calf thymus DNA in tetraalkylammonium ion solutions. The normalized melting temperatures calculated from literature data for poly(A)·poly(U) and two proteins, ribonuclease and lysozyme, in tetraalkylammonium ion solutions also increased linearly with inverse solvent viscosity. By contrast, the normalized melting temperatures calculated from literature data for DNA in solutions containing ethylene glycol or glycerol to modify the viscosity increased linearly with the logarithm of inverse solvent viscosity, not the first power of inverse solvent viscosity.


Assuntos
DNA/química , Compostos de Amônio Quaternário/química , Temperatura , Animais , Bovinos , Íons/química , Conformação de Ácido Nucleico , Solventes/química , Viscosidade
6.
J Phys Chem B ; 121(9): 2015-2026, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28155277

RESUMO

Free solution electrophoretic mobilities of polyelectrolytes with different charge densities have been analyzed using data taken from the literature. The polyions include single- and double-stranded DNA oligomers, small aromatic molecules, peptides, proteins, and synthetic copolymers. Mobility variations due to differences in the background electrolytes were minimized by calculating mobility ratios, dividing the mobility of each charge variant in each data set by the mobility of the most highly charged polyion in that data set. In all cases, the mobility ratios increase linearly with the logarithm of the fractional charge, not the first power of the charge as usually assumed. In addition, the mobility ratios observed for all polyelectrolytes, except for the synthetic copolymers, exhibit a common dependence on the logarithm of fractional charge. The unique results observed for the synthetic copolymers may be due to the flexibility of their hydrocarbon backbones, in contrast to the relatively rigid hydrophilic backbones of the other polyelectrolytes. The mobilities observed for the DNA charge variants are well predicted by the Manning electrophoresis equation, whereas the mobilities predicted by zeta potential theories are higher. However, mobility ratios calculated from both theories agree with the observed results.


Assuntos
DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Simulação de Dinâmica Molecular , Polieletrólitos/química , Hidrodinâmica , Eletricidade Estática
7.
Anal Chem ; 87(17): 9042-6, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26218420

RESUMO

Free solution capillary electrophoresis (CE) is a useful technique for measuring the translational diffusion coefficients of charged analytes. The measurements are relatively fast if the polarity of the electric field is reversed to drive the analyte back and forth past the detection window during each run. We have tested the validity of the resulting diffusion coefficients using double-stranded DNA molecules ranging in size from 20 to 960 base pairs as the model system. The diffusion coefficients of small DNAs are equal to values in the literature measured by other techniques. However, the diffusion coefficients of DNA molecules larger than ∼30 base pairs are anomalously high and deviate increasingly from the literature values with increasing DNA molar mass. The anomalously high diffusion coefficients are due to electrostatic coupling between the DNA and its counterions. As a result, the measured diffusion coefficients vary with the diffusion coefficient of the counterion, as well as with cation concentration and electric field strength. These effects can be reduced or eliminated by measuring apparent diffusion coefficients of the DNA at several different electric field strengths and extrapolating the results to zero electric field.


Assuntos
DNA/química , Difusão , Eletricidade Estática , Eletroforese Capilar , Íons/química
8.
Biophys J ; 108(9): 2291-9, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25954886

RESUMO

Capillary electrophoresis has been used to characterize the interaction of monovalent cations with 26-basepair DNA oligomers containing A-tracts embedded in flanking sequences with different basepair compositions. A 26-basepair random-sequence oligomer was used as the reference; lithium and tetrabutylammonium (TBA(+)) ions were used as the probe ions. The free solution mobilities of the A-tract and random-sequence oligomers were identical in solutions containing <∼ 100 mM cation. At higher cation concentrations, the A-tract oligomers migrated faster than the reference oligomer in TBA(+) and slower than the reference in Li(+). Hence, cations of different sizes can interact very differently with DNA A-tracts. The increased mobilities observed in TBA(+) suggest that the large hydrophobic TBA(+) ions are preferentially excluded from the vicinity of the A-tract minor groove, increasing the effective net charge of the A-tract oligomers and increasing the mobility. By contrast, Li(+) ions decrease the mobility of A-tract oligomers because of the preferential localization of Li(+) ions in the narrow A-tract minor groove. Embedding the A-tracts in AT-rich flanking sequences markedly alters preferential interactions of monovalent cations with the B(∗) conformation. Hence, A-tracts embedded in genomic DNA may or may not interact preferentially with monovalent cations, depending on the relative number of A · T basepairs in the flanking sequences.


Assuntos
Pareamento de Bases , DNA Forma A/química , DNA de Forma B/química , Lítio/química , Compostos de Amônio Quaternário/química
9.
Electrophoresis ; 35(12-13): 1855-63, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24648187

RESUMO

The free solution mobilities of ssDNA and dsDNA molecules with variable charge densities have been measured by CE. DNA charge density was modified either by appending positively or negatively charged groups to the thymine residues in a 98 bp DNA molecule, or by replacing some of the negatively charged phosphate internucleoside linkers in small ssDNA or dsDNA oligomers with positively charged phosphoramidate linkers. Mobility ratios were calculated for each dataset by dividing the mobility of a charge variant by the mobility of its unmodified parent DNA. Mobility ratios essentially eliminate the effect of the BGE on the observed mobility, making it possible to compare analytes measured under different experimental conditions. Neutral moieties attached to the thymine residues in the 98-bp DNA molecule had little or no effect on the mobility ratios, indicating that bulky substituents in the DNA major groove do not affect the mobility significantly. The mobility ratios observed for the thymine-modified and linker-modified DNA charge variants increased approximately linearly with the logarithm of the fractional negative charge of the DNA. Mobility ratios calculated from previous studies of linker-modified DNA charge variants and small multicharged organic molecules also increased approximately linearly with the logarithm of the fractional negative charge of the analyte. The results do not agree with the Debye-Hückel-Onsager theory of electrophoresis, which predicts that the mobility of an analyte should depend linearly on analyte charge, not the logarithm of the charge, when the frictional coefficient is held constant.


Assuntos
DNA/química , Eletroforese Capilar/métodos , Compostos Orgânicos/química , Tamanho da Partícula , Soluções/química , Eletricidade Estática , Timina/química
10.
Biochemistry ; 52(24): 4138-48, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23675817

RESUMO

The intrinsic curvature of seven 98 bp DNA molecules containing up to four centrally located A6-tracts has been measured by gel and capillary electrophoresis as a function of the number and arrangement of the A-tracts. At low cation concentrations, the electrophoretic mobility observed in polyacrylamide gels and in free solution decreases progressively with the increasing number of phased A-tracts, as expected for DNA molecules with increasingly curved backbone structures. Anomalously slow electrophoretic mobilities are also observed for DNA molecules containing two pairs of phased A-tracts that are out of phase with each other, suggesting that out-of-phase distortions of the helix backbone do not cancel each other out. The mobility decreases observed for the A-tract samples are due to curvature, not cation binding in the A-tract minor groove, because identical free solution mobilities are observed for a molecule with four out-of-phase A-tracts and one with no A-tracts. Surprisingly, the curvature of DNA A-tracts is gradually lost when the monovalent cation concentration is increased to ∼200 mM, regardless of whether the cation is a hydrophilic ion like Na+, NH4+, or Tris+ or a hydrophobic ion like tetrabutylammonium. The decrease in A-tract curvature with increasing ionic strength, along with the known decrease in A-tract curvature with increasing temperature, suggests that DNA A-tracts are not significantly curved under physiological conditions.


Assuntos
Cátions Monovalentes/química , DNA/química , Sequência de Bases , Difusão , Eletroforese Capilar , Interações Hidrofóbicas e Hidrofílicas , Íons , Dados de Sequência Molecular , Distribuição Normal , Conformação de Ácido Nucleico , Soluções
11.
Biochemistry ; 50(42): 9148-57, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21942650

RESUMO

The free solution electrophoretic mobilities and thermal stabilities of hairpins formed by two complementary 26-nucleotide oligomers have been measured by capillary electrophoresis. The oligomers are predicted to form molecular beacon-like hairpins with 5 bp stems and 16 nucleotides in the loop. One hairpin, called hairpin2 (hp2), migrates with a relatively fast free solution mobility and exhibits melting temperatures that are reasonably well predicted by the popular structure-prediction program Mfold. Its complement, called hairpin1 (hp1), migrates with a slower free solution mobility and forms a stable hairpin only in solutions containing ≥200 mM Na(+). The melting temperatures observed for hp1 are ~18 °C lower than those observed for hp2 and ~20 °C lower than those predicted by Mfold. The greater thermal stability of hp2 is due to the presence of tandem GA residues on opposite sides of the loop. If the corresponding TC residues in the hp1 loop are replaced by tandem GA residues, the melting temperatures of the modified hairpin are close to those observed for hp2. Eliminating the tandem GA residues in the hp2 loop significantly decreases the thermal stability of hp2. If the loops are replaced by a loop of 16 thymine residues, the free solution mobilities and thermal stabilities of the T-loop hairpin are equal to those observed for hp1. Hence, the loop of hp1 appears to be relatively unstructured, with few base-base stacking interactions. Interactions between tandem GA residues on opposite sides of the hp2 loop appear to compact the loop and increase hairpin stability.


Assuntos
Adenina/química , Guanina/química , Conformação de Ácido Nucleico , Sequência de Bases , Eletrólitos/química , Temperatura Alta , Repetições de Microssatélites , Desnaturação de Ácido Nucleico , Soluções
12.
Biochemistry ; 50(15): 3084-94, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21410141

RESUMO

The effect of monovalent cations on the thermal stability of a small model DNA hairpin has been measured by capillary electrophoresis, using an oligomer with 16 thymine residues as an unstructured control. The melting temperature of the model hairpin increases approximately linearly with the logarithm of increasing cation concentration in solutions containing Na(+), K(+), Li(+), NH(4)(+), Tris(+), tetramethylammonium (TMA(+)), or tetraethylammonium (TEA(+)) ions, is approximately independent of cation concentration in solutions containing tetrapropylammonium (TPA(+)) ions, and decreases with the logarithm of increasing cation concentration in solutions containing tetrabutylammonium (TBA(+)) ions. At constant cation concentration, the melting temperature of the DNA model hairpin decreases in the order Li(+) ∼ Na(+) ∼ K(+) > NH(4)(+) > TMA(+) > Tris(+) > TEA(+) > TPA(+) > TBA(+). Isothermal studies indicate that the decrease in the hairpin melting temperature with increasing cation hydrophobicity is not due to saturable, site-specific binding of the cation to the random coil conformation, but to the concomitant increase in cation size with increasing hydrophobicity. Larger cations are less effective at shielding the charged phosphate residues in B-form DNA because they cannot approach the DNA backbone as closely as smaller cations. By contrast, larger cations are relatively more effective at shielding the phosphate charges in the random coil conformation, where the phosphate-phosphate distance more closely matches cation size. Hydrophobic interactions between alkylammonium ions interacting electrostatically with the phosphate residues in the coil may amplify the effect of cation size on DNA thermal stability.


Assuntos
Cátions Monovalentes/química , Cátions Monovalentes/farmacologia , DNA/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Sequência de Bases , Cátions Monovalentes/metabolismo , DNA/genética , DNA/metabolismo , Relação Dose-Resposta a Droga , Interações Hidrofóbicas e Hidrofílicas , Sequências Repetidas Invertidas , Metais Alcalinos/farmacologia , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Fosfatos/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Soluções , Eletricidade Estática , Temperatura de Transição/efeitos dos fármacos
13.
J Phys Condens Matter ; 22(49): 494110, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21406776

RESUMO

Transient electric birefringence has been used to quantify the curvature of two DNA restriction fragments, a 199-base-pair fragment taken from the origin of replication of the M13 bacteriophage and a 207-base-pair fragment taken from the VP1 gene in the SV40 minichromosome. Stable curvature in the SV40 and M13 restriction fragments is due to a series of closely spaced A tracts, runs of 4-6 contiguous adenine residues located within 40 or 60 base pair 'curvature modules' near the center of each fragment. The M13 and SV40 restriction fragments exhibit bends of ∼ 45° in solutions containing monovalent cations and ∼ 60° in solutions containing Mg(2 +) ions. The curvature is not localized at a single site but is distributed over the various A tracts in the curvature modules. Thermal denaturation studies indicate that the curvature in the M13 and SV40 restriction fragments remains constant up to 30 °C in solutions containing monovalent cations, and up to 40 °C in solutions containing Mg(2 +) ions, before beginning to decrease slowly with increasing temperature. Hence, stable curvature in these DNA restriction fragments exists at the biologically important temperature of 37 °C.

14.
Electrophoresis ; 30 Suppl 1: S188-95, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19517510

RESUMO

This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are primarily due to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 +/- 0.01) x 10(-4) cm2/V s in 40 mM Tris-acetate-EDTA buffer at 20 degrees C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration.


Assuntos
DNA/análise , Eletroforese em Gel de Ágar/métodos , Eletroforese em Gel de Poliacrilamida/métodos , DNA/química , Eletroforese em Gel de Ágar/história , Eletroforese em Gel de Poliacrilamida/história , História do Século XX , História do Século XXI , Conformação de Ácido Nucleico
15.
Biochemistry ; 48(5): 1047-55, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19154116

RESUMO

The binding of five different monovalent cations to DNA oligomers containing A-tracts, runs of four or more contiguous adenine residues, has been assessed by capillary electrophoresis, using the Replacement Ion method. In this method, a nonbinding cation in the background electrolyte is gradually replaced by a binding cation, keeping the ionic strength of the solution constant. Monovalent cation binding reduces the effective charge of an A-tract-containing oligomer, decreasing its free solution mobility. The cations bind in the A-tract minor groove, because the binding site can be blocked by the minor groove binding drug netropsin. Li(+), NH(4)(+), and Tris(+) ions bind to A-tracts with similar affinities; the binding of Na(+) ions is weaker, and K(+) ion binding is highly variable. Each A-tract appears to bind one monovalent cation upon saturation of the binding site(s). For a given cation, the apparent dissociation constants depend on A-tract sequence and orientation, but not on the phasing of the A-tracts with respect to the helix repeat. Differences in the cooperativity of binding of the various cations to A-tracts with different sequences suggest that monovalent cation binding may be coupled with a conformational transition leading to the formation of the characteristic narrow minor groove A-tract structure.


Assuntos
Nucleotídeos de Adenina/química , Sequência de Bases , Cátions Monovalentes/química , DNA/química , DNA/metabolismo , Nucleotídeos de Adenina/metabolismo , Sítios de Ligação/genética , Eletroforese Capilar
16.
J Chromatogr A ; 1216(10): 1917-29, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19100556

RESUMO

DNA electrophoretic mobilities are highly dependent on the nature of the matrix in which the separation takes place. This review describes the effect of the matrix on DNA separations in agarose gels, polyacrylamide gels and solutions containing entangled linear polymers, correlating the electrophoretic mobilities with information obtained from other types of studies. DNA mobilities in various sieving media are determined by the interplay of three factors: the relative size of the DNA molecule with respect to the effective pore size of the matrix, the effect of the electric field on the matrix, and specific interactions of DNA with the matrix during electrophoresis.


Assuntos
DNA/química , Eletroforese/métodos , Polímeros/química , Eletro-Osmose , Porosidade
17.
Anal Biochem ; 373(2): 407-9, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18022379

RESUMO

Capillary electrophoresis has been used to determine whether zwitterions contribute to the ionic strength of a solution, by measuring the mobility of a double-stranded DNA oligomer in cacodylate-buffered solutions containing various concentrations of the ionic salt tetraethylammonium chloride (TEA(+)Cl(-)) or the zwitterion tricine(+/-). The mobility of the DNA decreased as the square root of ionic strength, as expected from the Debye-Hückel-Onsager theory of electrophoresis, when TEA(+)Cl(-) was added to the buffer. However, the mobility was independent of the concentration of added tricine(+/-). Hence, zwitterions do not contribute to the ionic strength of a solution.


Assuntos
DNA/isolamento & purificação , Glicina/análogos & derivados , Íons/química , Concentração Osmolar , Eletroforese Capilar , Glicina/química , Soluções/química , Tetraetilamônio/química
18.
Biophys J ; 94(5): 1719-25, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17993492

RESUMO

Monovalent cation binding by DNA A-tracts, runs of four or more contiguous adenine or thymine residues, has been determined for two curved approximately 200 basepair (bp) restriction fragments, one taken from the M13 origin of replication and the other from the VP1 gene of SV40. These two fragments have previously been shown to contain stable, centrally located bends of 44 degrees and 46 degrees , respectively, located within approximately 60 bp "curvature modules" containing four or five irregularly spaced A-tracts. Transient electric birefringence measurements of these two fragments, sequence variants containing reduced numbers of A-tracts in the SV40 curvature module or changes in the residues flanking the A-tracts in the M13 curvature module, have been combined with the free solution electrophoretic mobilities of the same fragments using known equations to estimate the effective charge of each fragment. The effective charge is reduced, on average, by one-third charge for each A-tract in the curvature module, suggesting that each A-tract binds a monovalent cation approximately one-third of the time. Monovalent cation binding to two or more A-tracts is required to observe significant curvature of the DNA helix axis.


Assuntos
Bacteriófago M13/genética , Proteínas do Capsídeo/genética , Fragmentação do DNA , DNA Viral/química , DNA Viral/genética , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Cátions Monovalentes/química , Cátions Monovalentes/metabolismo , DNA Viral/metabolismo , Eletroforese Capilar , Dados de Sequência Molecular , Conformação de Ácido Nucleico
19.
Biochemistry ; 46(38): 10931-41, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17764160

RESUMO

The electrophoretic mobilities of 24 single-stranded DNA oligomers, each containing 26 nucleotide residues, have been measured in polyacrylamide gels and in free solution. The mobilities observed at 20 degrees C differed by approximately 20% in polyacrylamide gels and by approximately 10% in free solution, even though the oligomers contained the same number of bases. Increasing the temperature or adding urea to the solution equalized the mobilities of the oligomers, suggesting that the variable mobilities observed at 20 degrees C are due to the formation of stable secondary structures, most likely hairpins. Thermal melting profiles were measured for eight oligomers in 40 mM Tris acetate buffer. The observed melting temperatures of most oligomers correlated roughly with the mobilities observed at 20 degrees C; however, one oligomer was much more stable than the others. The melting temperatures of four of the oligomers were close to the values predicted by DINAMelt [Markham, N. R., and Zuker, M. (2005) Nucleic Acids Res. 33, W577-W581]; melting temperatures of the other oligomers differed significantly from the predicted values. Thermal melting profiles were also measured for two oligomers as a function of the Tris acetate buffer concentration. The salt concentration dependence of the melting temperatures suggests that 0.15 Tris+ ion per phosphate is released upon denaturation. Because the apparent number of Tris+ ions released is greater than that observed by others for the release of Na+ ions from similar hairpins, the results suggest that DNA hairpins (and, presumably, duplexes) bind more Tris+ ions than Na+ ions in solution.


Assuntos
DNA de Cadeia Simples/química , Eletroforese Capilar/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Oligodesoxirribonucleotídeos/química , Algoritmos , Pareamento de Bases , Sequência de Bases , Soluções Tampão , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Sais/química , Termodinâmica , Temperatura de Transição , Ureia/química
20.
Anal Biochem ; 365(1): 103-10, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17416339

RESUMO

Capillary electrophoresis (CE) has been used to characterize the hairpin-random coil transition of four octamers in the GCxxxxGC minihairpin family, where xxxx is GAAA, TTTC, TTTT, or AAAA. The transition can be monitored by CE because differences in the frictional coefficients of the hairpin and coil forms of each octamer lead to a difference of approximately 9% in the free solution mobilities of the two conformations. The GAAA octamer is unusually stable, with a melting temperature of 65 degrees C. The TTTT octamer forms a minihairpin with a melting temperature of 29 degrees C, the TTTC octamer has a melting temperature of 16 degrees C, and the AAAA octamer has a melting temperature below 0 degrees C. The thermal transitions of the TTTT, TTTC, and AAAA octamers are well fitted by a structure prediction algorithm; however, the GAAA minihairpin is considerably more stable than predicted. The melting temperature of the GAAA minihairpin is reduced to 47 degrees C in aqueous buffers containing 7.2M urea and to 33 degrees C in buffers containing 7.2M urea plus 40% (v/v) formamide. The combined results indicate that CE is a sensitive technique for monitoring conformational transitions in small DNA molecules.


Assuntos
DNA/química , Eletroforese Capilar/métodos , Desnaturação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Sequência de Bases , Soluções Tampão , Temperatura Alta , Modelos Moleculares , Conformação de Ácido Nucleico , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...